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interfaces – to measure vertical pressures under moving railway loadings – using pressure 
sensitive ink sensors. In addition, the sensors were used to measure the surface pressures 
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EXECUTIVE SUMMARY 
 

Imposed pressures at critical interfaces on the surface of highway/railway crossings and within 
the track structure were successfully measured using pressure sensitive ink sensors (Tekscan) 
and earth pressure cells (Geokon). Measurements were confined to crossings containing a 
definable layer of asphalt, similar to subballast, within the structure. 
 
 The non-intrusive nature of the thin pressure sensitive ink sensor makes it ideal for 
pressure measurements within the upper region of the track structure and on the surface of the 
crossing. The more conventional earth pressure cell is applicable for pressure measurements at 
the interfaces between the identified structural layers within the track structure. 
 
 Peak dynamic pressures typically ranged from 400 to 600 psi (2,800 to 4,200 kPa) at the 
rail base/tie plate interface for the 286,000 lb of (130 metric ton) locomotives and loaded cars. 
The pressures were reduced from 13 to 17 psi (90 to 120 kPa) on top of the asphalt layer for the 
same loading condition. This is only two to three times greater in magnitude than the pressure 
exerted by an average-size person standing on an asphalt pavement. The pressures were further 
reduced by the asphalt layer to 7 to 8 psi (50 to 55 kPa) under the asphalt layer at the subgrade 
interface. 
 
 In-track test measurements on asphalt underlayment trackbeds obtained on the revenue 
lines and those obtained by TTCI’s heavy-haul research test facility are consistent for similar 
trackbed structural compositions. 
 
 Static pressures measured with the Tekscan sensors at the tire/pavement interface on 
crossing surfaces indicate that the intensity of the contact pressure is similar to the measured tire 
inflation pressure. These values ranged from 135 psi (930 kPa) for heavily loaded trucks to 75 
psi (520 kPa) for loaded utility trucks to around 30 psi (210 kPa) for typical passenger 
automotives.
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CHAPTER 1.  INTRODUCTION 
 

1.1 BACKGROUND 
The primary purpose of the at-grade highway-railway crossing is to provide a smooth surface for 
the safe passage of rubber-tired vehicles across the railroad. The crossing surface and trackbed 
(rail, ties, and ballast/subballast) replace the highway pavement structure within the jointly used 
crossing area. The crossing surface represents a significantly expensive special portion of the 
railroad and highway systems. 
 
 Crossings are likely to deteriorate at a faster rate and require reconstruction at more 
frequent intervals than the pavement (or railroad) adjacent to the crossing. In addition, crossings 
often provide a low ride quality, due to settlement soon after reconstruction, and the driving 
public must tolerate this annoyance until funding for reconstruction is available. 
 
 The crossing structure must provide adequate structural integrity to support the imposed 
loadings. Typical crossing designs only provide for the crossing surface to be placed beside the 
rails and above the ties. Only unbound granular materials and possibly a geosynthetic are placed 
under the ties. The open granular trackbed permits surface water entering along the rail and the 
joints within the surface to penetrate and subsequently saturate the underlying subgrade/roadbed, 
thus lowering the structural integrity of the structure. Groundwater, if present due to inadequate 
drainage, further lowers the structural integrity of the trackbed support layer. 
 
 Crossing structures having inadequate structural support provide excessive deflections 
under combined highway/railroad loadings, which increase effective impact stresses and fatigue 
on the crossing components. The surface deteriorates prematurely. Permanent settlement occurs 
within the crossing area imparting additional impact stresses and fatigue from both highway and 
railroad loadings. 
 
 Periodically, the trackbed on both sides of the crossing will be raised with additional 
ballast and surfaced. The crossing becomes a permanent low spot in the railroad profile, which 
further increases impact stresses from the railroad loadings. In addition, the low spot serves to 
collect water, and the impaired drainage further weakens the underlying structure. 
 
 When the roughness and deterioration of the crossing adversely affect the safety and 
reasonable traffic operations across the crossing, the crossing must be removed and replaced at 
tremendous cost and inconvenience to the traveling public and railroad operations. Typically, the 
crossing is replaced using similar materials and techniques, thus assuring a similar series of 
events. 
 
 The typical crossing renewed with conventional granular materials often isn’t structurally 
adequate to withstand the combined highway/railroad loadings. A high-quality substructure (or 
base) is needed below the trackbed to provide similar load carrying, confining, and 
waterproofing qualities to the common crossing area as exists in the abutting pavement sections. 
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1.2 ASPHALT UNDERLAYMENT APPLICATION 
Many innovative practices have been utilized by the railroad industry in recent years. These 
provide increased efficiency so the railroad industry can achieve greater profitability and 
compete with other modes of transportation. Designs and materials selection for the track 
structure have advanced in recent years to accommodate the increased tonnages and car weights. 
Continuously welded rail, larger size rail, cleaner steel and premium steel for specific 
applications represent advances in rail technology. Various new designs and material 
compositions for ties and fasteners are in use and undergoing evaluations. The advantages of 
selecting high quality ballast materials are well documented. 
 
 Hot mix asphalt has been used as a subballast layer to replace granular subballast. A 
substantial amount of this development research has been conducted during the past 25 years. 
Papers describing this development have been presented previously (Rose & Tucker, 2002) 
(Rose, Li, & Walker, 2002). 
 
 Asphalt underlayments have shown to be particularly applicable to special track features 
such as railroad crossing diamonds, rail/highway crossings, tunnel floors, and bridge approaches. 
The underlayment is also applicable to areas of open track with weak subgrades, soft soils or 
poor drainage. According to the Asphalt Institute, there are multiple benefits of a hot mixed 
asphalt layer in a track structure including (Asphalt Institute, 1998): 

 A strengthened track support layer below the ballast to uniformly distribute reduced 
loading stresses to the roadbed (subgrade); 

 A waterproofing layer and confinement to the underlying roadbed that provides 
consistent load, carrying capability for track structures, even on roadbeds of marginal 
quality; 

 An impermeable layer to divert water to side ditches, essentially eliminating subgrade 
moisture fluctuations; 

 A consistently high level of confinement for the ballast so it can develop high shear 
strength and provide uniform pressure distribution; 

 A resilient layer between the ballast and roadbed to reduce the likelihood of subgrade 
pumping without substantially increasing track stiffness; and 

 An all-weather, uniformly stable surface for placing the ballast and track superstructure. 
  

1.3 SCOPE 
It has been desirable for years to develop non-invasive procedures to determine the 
pressures/stresses at various levels and interfaces in highway/railway crossing structures. 
Understanding how the crossing layers respond to highway and railway dynamic loadings is an 
important aspect to optimize crossing designs and improve long-term performance. 
 
 The research reported herein documents the development of techniques to measure 
pressures 1) within the crossing support layers using Geokon earth pressure cells and 2) on the 
crossing surface using Tekscan pressure sensitive ink sensors. The report specifically describes: 

 The optimum procedure to install the sensors into the track, 
 The recommended practices to effectively collect data with the software, 
 The accepted techniques for analyzing the results, and 
 Pressure data from highway/rail crossings containing asphalt underlayment. 
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CHAPTER 2.  EARTH PRESSURE CELL MEASUREMENTS 
 
2.1 INTRODUCTION 
Geokon Model 3500 Earth Pressure Cells were used to measure the pressure exerted by a train or 
highway vehicle on supporting materials within the track structure.  Figure 2.1 is a picture of the 
typical hydraulic type pressure cell. The portion of the cell that receives the load consists of two 
flat stainless steel circular plates, 9 in. (23 cm) in diameter welded together at their periphery. 
The space between the two plates is filled with de-aired hydraulic fluid. When a load is applied 
to the plates, the load compresses the fluid and forces it down a short length of high-pressure 
stainless steel tubing. This tubing connects to a pressure transducer, which converts the pressure 
of the compressed fluid into an electrical signal. From the pressure transducer, the electrical 
signal is transmitted through a signal cable to the readout location. 
 
2.2 SETUP AND DATA ACQUISITION SYSTEM 
A simple setup is used to record the voltages. The pressure cell is placed within the track 
structure at the point where measurements are to be taken. A laptop computer with data 
acquisition software is required to provide the readout location. The 12-volt pressure cell cannot 
be connected directly to the computer, so a junction box is also required. The junction box has 
the pressure cells connected to it, which is in turn connected to the laptop computer. A 12-volt 
battery provides power for the electrical signal. This battery also connects to the junction box. In 
this manner, the junction box acts as a hub through which all components connect, and also 
provides multiple ports for additional pressure cells thereby allowing for multiple pressure 
readings to be recorded simultaneously. Figure 2.2 is a depiction of the configuration of the 
components. 
 
 Snap-Master was the data acquisition system used for obtaining the pressure 
measurements. It is a Windows-based program that allows the user to record the electrical signal 
from the pressure cell in real time. In order to run the program, the system requires either 
Windows 95 or 98 to be installed on the computer. Following are the basic steps for recording a 
pressure reading using Snap-Master: 

1. Install the pressure cell in the desired location in the trackbed. 
2. Connect the pressure cell to a 12-volt battery for power and a laptop computer with 

Snap-Master installed. 
3. Turn on computer and wait for the main menu with the program icons to appear. 

Select ‘Start’ from the bottom left corner and click on ‘Programs’. This will display a 
list of folders that contain all of the programs. Select the folder labeled ‘HEM Data’, 
and then select ‘Snap-Master’. 

4. Once Snap-Master is open, go to the ‘File’ tab in the upper left corner of the screen. 
A drop down menu will appear. Select ‘Open Instrument’ from this menu. Another 
menu will appear, and this time select ‘Newpress’. 

5. Now the screen should display three icons running diagonally from top left to bottom 
right. The first icon is the A/D Device. Selecting this icon will allow the user to edit 
the port that the cell connects to in the junction box. For example, if only one pressure 
cell is in use, then it will be plugged into the first port, channel A0 in the junction 
box. Therefore, only the A0 line should have a ‘yes’ next to it. For every cell that 
connects to the junction box, the corresponding port should be labeled ‘yes’ in this 



5 
 

 
Figure 2.1. Typical Pressure Cell 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2. Pressure Cell Measurement Configuration 
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menu. Also, this icon will allow the user to specify how many data points will be 
taken per second. To change this, go to the tab marked ‘Settings’. Select ‘Frame 
Settings’ from the list of choices. This screen allows for several inputs, but to reduce 
or increase the number of points taken per second, enter the desired value in the box 
next to ‘sample rate’. A typical sample rate is 100 points per second. 

6. The next icon selected is the one in the bottom right corner marked ‘Disk Out’. This 
icon allows the user to specify the file name and its location. Select the desired 
location and name the file. For the pressure measurements, a system of two numbers 
was used. The first number represents the number of times measurements have been 
gathered at a site. The second number represents the number of files that have been 
collected during any one testing period such as one day. A common file name would 
be 5-3, which would mean the fifth testing period for that location and the third 
recording for that day. The extension of the file is .CSV (comma separated variable). 
The extension allows for the data to be exported into other programs such as 
Microsoft Excel for further analysis. 

7. Click on the remaining icon, which is the ‘Display’ icon. This icon allows the user to 
modify the display where data is taken and to begin the process of data collection. 
The default screen should be a graph of y versus t. This is the desired screen to use 
since it will display a plot of the voltages as they are recorded. To begin recording, 
click on the ‘Start’ button. Recordings should be started a few seconds prior to the 
initial desired reading. 

8. Once the desired pressure measurements have been obtained, click on ‘Stop’. At this 
point a file has been created of voltages for the load that was applied to the pressure 
cell. 

9. The next step is to convert the recorded voltages into pressure values. To convert the 
recorded voltage to a pressure value, the following formula is used: 

 
         Pressure (psi) = (Geokon Calibration Factor) x (Voltage Reading – Zero Reading) 
 
        The ‘Geokon Calibration Factor’ is the one supplied by the manufacturer. The 

‘Voltage Reading’ is the value that was recorded. The ‘Zero Reading’ is the voltage 
that is recorded when there is no load on the plates of the cell. Each cell is different, 
and each has an inherent amount of voltage that it puts out. Therefore, to get a true 
pressure measurement, the first reading at any location must be in the unloaded 
condition so the voltage that the cells experience in the unloaded condition can be 
subtracted from the actual reading. 

10. With the ‘Frame Settings’ button set to 100 points per second, a high number of 
points are typically gathered for each pressure measurement. Instead of trying to 
calculate the pressure manually for each point, an Excel Spreadsheet is typically 
used. The data is opened in Excel, and since it was saved with a .CSV extension, it 
appears in columns in the spreadsheet. The formula for converting voltages into psi 
can be entered and repeated for all the pressure points gathered. This also makes it 
simple to generate a plot of all of the gathered points to determine the pressure 
distribution. 
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2.3 CALIBRATION 
Each cell was calibrated prior to shipping. This is done to provide a calibration factor, which is 
used for converting voltage readings to actual pressure values. The procedure involves 
developing a plot of recorded voltages for known vertical pressures. From this plot, the inverse 
of the slope is determined, which is the calibration factor. Prior to installation at the test site, the 
calibration factor for each cell is checked in the laboratory. The method used for developing the 
plot of recorded voltages versus known pressures involves placing the cell at the bottom of a 12-
in. (300 mm) square, 8-ft (2.4 m) high column. Figure 2.3 is a drawing of this calibration device. 
 
 The cell is sealed in place at the bottom, and water is added. Voltages are recorded as the 
water level increases. Once the water reaches the top of the column, the water is turned off along 
with the data acquisition software. At this point, the voltage readings are available, and so are 
known vertical pressures from the water column for these readings. This is true because the unit 
weight of water is known, along with the dimensions of the column. Therefore, the pressure of 
the water is known at any point in the column. By plotting the voltages versus the known 
pressures, a calibration factor was determined and checked with the manufacturer’s calibration 
factor. In all cases, both values were essentially the same. 
 
2.4  INSTALLATION PROCEDURE 
Installation of the pressure cells at each test location required some planning and care during the 
installation procedure itself. Prior to installation, the precise locations for the cells were 
determined and marked using triangular surveys. The survey included locating and marking two 
benchmarks, and measuring from these benchmarks the distances to the cell locations with 
measuring tapes. At the point where the two tapes coincided was the proposed cell location. A 
definite mark was made and the distances recorded. From these distances, it was possible to 
reestablish the location of where the cell should be placed once the track was removed. 
 
 On the day of the track installation, when the cells are ready to be placed, the distances 
were measured from the benchmark, and a mark was made. If the cells were being placed on top 
of the asphalt, ice was used to cool the asphalt before placement. A thin rubber mat was placed 
under the cell to act as a uniform bearing and support surface. A gallon bag of cold mix asphalt 
was placed on top of the cell to serve as a buffer between the cell and the ballast so that pressures 
would be distributed evenly over the cell. PVC pipe was used as a shield around the transducer to 
protect it from the ballast. Also, PVC pipe was used to cover the cord from the transducer to the 
junction box thereby protecting the cord as well.  Figure 2.4 is a picture of the cells being 
installed on the asphalt. When not in use, the end of the cord was placed and secured in a plastic 
bag and taped to ensure no moisture damage. The plastic bag was buried in the ballast near the 
crossing for easy access. 
 
2.4.1 Richmond Installation 
Rehabilitated in September of 2000, this CSX Transportation Cincinnati to Corbin mainline 
crossing provided an ideal location due to its volume of traffic. The railroad traffic consists of a 
mixture of trains, with the most frequent being mixed freight, auto racks, and coal trains. 
Approximately 20 trains pass over this crossing per day with an annual tonnage of 71 million 
gross tons. The highway portion of the traffic consists of 17,000 vehicles per day (Rose & 
Tucker, 2002). The rehabilitation work was performed during one day. Appendix A contains an 
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Figure 2.3. Water Column for Pressure Cell Calibration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4. Pressure Cell Installation 
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installation time study of this work. An asphalt underlayment 6 in. (150 mm) thick was placed as 
the base, with approximately 10 in. (250 mm) of ballast placed on top of the asphalt. Full-width 
precast concrete was used as the crossing surface material, which provided a smooth crossing for 
all vehicular traffic. Figure 2.4.1a shows the finished crossing. 
 
 Four pressure cells were used and since this was the first major installation of these 
measuring devices, strategic locations under the track structure were selected in order to measure 
pressures of four different points. The four cells were placed on top of the asphalt mat in order to 
determine pressures at the bottom of ballast/top of asphalt interface. Cell 1 was located beneath 
the rail and crib on the mat. (The crib is the area of volume between the ties.) Cell 2 was located 
beneath the intersection of the rail and a tie. Cell 3 was placed under the centerline of the track in 
the crib. Finally, Cell 4 was located under the centerline of the track and a tie. Figure 2.4.1b 
shows the configuration of the cells in relation to the crossing. This configuration was selected 
because it was desirable to determine the location within the track structure where the maximum 
pressure occurs. 
 
2.4.2 Lackey Installation 
Rehabilitation of this CSX Transportation mainline crossing occurred in June of 2001. This was 
also a desirable test location due to its high volume of heavy coal trains and coal trucks. 
Approximately 14 trains per day go through this crossing, with an annual traffic of 26 million 
gross tons. Highway traffic is not as heavy as at Richmond with only 4,000 vehicles per day. 
However, several hundred of those 4,000 vehicles are very heavily loaded coal trucks (Rose & 
Tucker, 2002). Like Richmond, the crossing at Lackey was rehabilitated in one day. An 
installation time study of this renewal is included in Appendix B. An asphalt underlayment 6 in. 
(150 mm) thick was placed on top of the subgrade, with 10 in. (250 mm) of ballast placed on top 
of the asphalt. For the surface, precast concrete panels were used for the center, and asphalt on 
the sides next to the rail. Figure 2.4.2a is a picture of the finished crossing. This type of surface 
also provides a smooth crossing for all vehicular traffic. 
 
 The Lackey installation was the second major installation of the pressure cells in a 
crossing. Approximately eight months of testing had already been performed at Richmond by 
that time; therefore, a new strategy was developed for selecting the locations of these pressure 
cells. Like Richmond, plans were to install four cells, and all four were to be placed on top of the 
asphalt. Preliminary testing at Richmond indicated that peak pressures developed under the rail 
and tie intersection. In order to further confirm this, three of these four cells were located under 
rail/tie intersections. Furthermore, the crossing at Lackey is located on a twelve-degree curve 
with 3.75 in. (95 mm) of superelevation. To determine if this difference in elevations of the rail 
had any effect on the pressures, two cells were placed under the rail/tie intersection on the high 
side, and one cell was placed under the rail/tie intersection under the low rail. The fourth cell was 
placed under a tie in the centerline of the track and used as a control for comparison with 
Richmond. Figure 2.4.2b shows the cells on top of the asphalt layer. Figure 2.4.2c depicts the 
configuration of the cells in relation to the crossing. 
 
2.5  TYPICAL TRAIN LOADINGS 
When evaluating the collected pressure data, the weights of the locomotives and cars must be 
known. In this study, the typical loadings were from locomotives, loaded and empty hopper cars, 
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Figure 2.4.1a. Rehabilitated Crossing in Richmond, Kentucky 

 

 

 

 

 

 

 

 
Figure 2.4.1b. Configuration of Pressure Cells in the Richmond Crossing 
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Figure 2.4.2a. Rehabilitated Crossing in Lackey, Kentucky 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4.2b. Pressure Cells Placed on the Asphalt Layer 
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Figure 2.4.2c. Configuration of Pressure Cells in the Lackey Crossing 

and loaded auto carrier cars. Table 2.5 displays the typical load type, the total weight for that 
load, and the individual wheel loads. The wheel load for a specific load can be calculated by 
dividing the total weight by the number of wheels. Each axle of a locomotive or car has two 
wheels. Therefore, a 6-axle locomotive would have 12 wheels. If the weight of the locomotive is 
395,000 lbs (179,200 kg), then the wheel load would be 33,000 lbs (15,000 kg). This information 
is important because it allows for comparisons to be made between the pressure at the 
(wheel/rail) surface and the pressure at the asphalt underlayment level. 
 
 The maximum wheel loads for the various types of locomotives and loaded coal hoppers 
range from 33,000 to 36,000 lbs (15,000 to 16,300 kg). This represents only a 10 percent 
variation. Wheel loads for empty coal hoppers and auto carriers are significantly less, 20 to 25% 
of the locomotive and loaded coal hoppers’ wheel loads. 
 
2.6  PRESSURE DATA FOR TRAIN LOADINGS 
In-track pressure measurements at the ballast/asphalt interface were obtained for various types of 
trains and loading magnitudes at the two instrumented crossings. Data was obtained in the real 
time domain over a period of time. Representative data and results are discussed. 

 
2.6.1 Richmond Crossing Data 
Pressure measurements from this location were taken for a two-year period. The predominate 
type of trains on this CSX Transportation mainline are auto trains and loaded and empty coal 
trains. These types of trains seem to be the most representative and therefore will be the basis for 
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the discussions and conclusions. A sample plot of a loaded auto train is presented in Figure 
2.6.1a. Pressure measurements were obtained for this type of train several times during the two 
years. The data for all the recorded trains of this type was very consistent. Of the four cells, Cell 
2 records the highest pressure, which is about 14 psi (96 kPa) for the locomotives and 9 psi (62 
kPa) for the lighter weight auto carriers. It is logical for this cell to record the highest pressure 
since it is located under the rail/tie intersection. This is the point in the track structure that 
receives the highest pressure since the wheels of the train are in direct contact with the rail, and 
the ties typically carry more of the impact than does the ballast in the crib areas. A second plot, 
Figure 2.6.1b, is included to further illustrate this point. This plot is of a loaded coal train. Notice 
again that Cell 2 records a maximum pressure of about 15 psi (103 kPa) for the locomotives and 
15 psi (103 kPa) for the loaded hoppers. The pressure from the locomotives appears to be 
consistent with the pressure recorded for each cell from each plot. Locomotives typically have 
similar wheel loads for any given train; therefore, this is an expected result. However, the car 
pressures do vary between the two different plots. This is also an expected result, since auto 
carriers are much lighter in weight than hopper cars loaded with coal. When the weight of the 
coal is added to the weight of the empty hopper cars, the combination exerts approximately the 
same pressure as the locomotives. The wheel loads are similar as noted in Table 2.5. 
 
 To further substantiate any conclusions regarding this crossing, Tables 2.6.1a through 
2.6.1.f contain data obtained for multiple auto trains and loaded and empty coal trains. Tables 
2.6.1a and 2.6.1b respectively show the data for locomotives and auto cars from empty and 
loaded auto trains. Tables 2.6.1c and 2.6.1d show the data for locomotives and empty hoppers 
from empty coal trains. Finally, Tables 2.6.1e and 2.6.1f show the pressure readings for 
locomotives and loaded hoppers from loaded coal trains. The designations next to the cell 
number indicate where the cell is located within the track structure. RC stands for Rail/Crib, RT 
stands for Rail/Tie, CC stands for Centerline of Track/Crib, and CT stands for Centerline of 
Track/Tie. 
 
 Consistently, Cell 2 records the highest pressure regardless of the type and magnitude of 
loading. Reviews of data from the 22 test trains revealed that the highest pressure recorded was 
17.5 psi (120 kPa), which was exerted from a locomotive under the point of the rail/tie 
intersection. The lowest pressure recorded was 0.7 psi (4.8 kPa) from an empty coal hopper 
under the rail in the crib. Under the rail/tie intersection, average values for the locomotives were 
14.8 psi (102 kPa) and average values for the loaded coal hoppers was 14.4 psi (99 kPa). For 
lighter loads such as empty coal hoppers, there was no particular maximum pressure location. All 
of the four cells recorded similar values. The average value obtained from all of the cell locations 
for an empty coal hopper was 1.6 psi (11 kPa). 
 
 The last two trains from the auto trains tables, files 14-4 and 14-6 from Tables 2.6.1a and 
2.6.1b, were measured two years after the crossing was rehabilitated. A comparison of this data 
with previous data shows that the data is consistent over time. For Cell 2, the locomotives 
measured after two years exerted 12.3 to 13.2 psi (85 to 91 kPa) under the rail/tie interface.  
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                       Table 2.5. Typical Train Loads 

Loading Type  Total Weight (lbs)  Wheel Load (lbs/wheel) 

6‐Axle Locomotives  395,000 – 432,000  33,000 ‐ 36,000 

4‐Axle Locomotives  262,000 – 288,000  33,000 ‐ 36,000 

Loaded Coal Hoppers  263,000  33,000 

   286,000  36,000 

Empty Coal Hoppers  50,000  6,250 

   63,000  7,900 

Loaded Auto Carriers    72,000 – 80,000   9,000 – 10,000  

Empty Auto Carriers   27,000 – 35,000  3,375 – 4,375  

 

Earlier measurements of locomotives under the rail/tie interface were between 15 and 17.5 psi 
(103 and 120 kPa). The measurements obtained after two years were slightly lower in value than 
the previous measurements, but slight differences in locomotive weights could account for the 
slight variation. Overall, the measurements for the locomotives and loaded auto cars agree 
throughout the course of the two years of measurements. 
 
 It is apparent from the data that maximum pressure is exerted under the rail/tie interface. 
Also, heavy loads such as locomotives produce this maximum pressure peak, whereas lighter 
loads such as empty cars consistently produce low values on all of the pressure cells. However, 
in regards to the locomotives and loaded cars, neither one of these types of loadings causes a 
significant amount of pressure on the asphalt. To put the pressure recorded for this crossing in 
perspective, if an average person who weighed 180 lbs (82 kg) were to stand on top of the 
asphalt layer, this person would exert about 6 psi (41 kPa) vertical pressure on the asphalt. A 
loaded coal truck typically exerts in excess of 100 psi (690 kPa), and possibly up to 200 psi 
(1380 kPa) if overloaded, on the surface of an asphalt-paved road. If the highest value recorded 
for a train is 17.5 psi (120 kPa), this implies that a heavy locomotive going through the crossing 
only exerts approximately three times the pressure of an average person standing on the asphalt, 
and five to 10 times less the pressure of a loaded coal truck on an asphalt surface. This is 
possible because the rail, ties, and ballast all distribute the load, and when combined with a 
stable base to resist the load, the pressure is reduced to a very low level. This implies that 
crossings should remain stable for many years without maintenance due to the low stress levels. 
 
2.6.2 Lackey Crossing Data 
To further validate these initial results, a second crossing was instrumented on the CSX 
Transportation line at Lackey. At the point of installation, it was already known from Richmond 
that maximum pressures occurred under the rail/tie interface. Therefore, three of the four cells at 
this location were placed under rail/tie interfaces. The fourth was placed under a tie in the 
centerline of the track to compare these pressure values to those obtained from the similarly 
placed pressure cells in Richmond. 
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Table 2.6.1a.  Pressures (psi) for Locomotives from Empty and 
                                           Loaded Auto Trains at Richmond 

 
Cell  File 4‐2 File 9‐6 File 11‐9 File 14‐4 File 14‐6 

   Q142  Q210  Q211  Q221  Q211 

   Locos  Locos  Locos  Locos  Locos 

1 (RC)  5  7  10  6.8  6.8 

2 (RT)  16.4  17.5  15  12.3  13.2 

3 (CC)  3.3  4.5  4  5  4 

4 (CT)  3.7  5  4  3.5  3.6 

 
 
 
 

Table 2.6.1b. Pressures (psi) for Auto Cars from Empty and Loaded  
                                      Auto Trains at Richmond 

 
Cell  File 4‐2  File 9‐6  File 11‐9  File 14‐4  File 14‐6 

   Empty  Empty  Loaded  Loaded  Loaded 

   Auto Cars  Auto Cars Auto Cars Auto Cars Auto Cars 

1 (RC)  1  3  5  3.2  3 

2 (RT)  3.7  8  8  7  6.6 

3 (CC)  1.8  3  3  3.5  3 

4 (CT)  1.3  3  2  1.8  2.1 

 

 
 
 

Table 2.6.1c.  Pressures (psi) for Locomotives from Empty Coal 
                                          Trains at Richmond 
 

Cell  File 3‐4  File 8‐6 File 9‐7 File 13‐1

   Locos  Locos  Locos  Locos 

1 (RC)  5  6.5  7  7.2 

2 (RT)  15.3  17  13  12.4 

3 (CC)  4  3  4.5  3.8 

4 (CT)  3.7  5  5  2.4 
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Table 2.6.1d. Pressures (psi) for Empty Hoppers from Empty Coal 
                                       Trains at Richmond 

 
Cell  File 3‐4  File 8‐6  File 9‐7  File 13‐1

   Empty  Empty  Empty  Empty 

   Hoppers Hoppers Hoppers Hoppers

1 (RC)  0.7  2.5  1  0.9 

2 (RT)  3  3  3  1.4 

3 (CC)  1.3  1  2  1.4 

4 (CT)  1  1.5  1.5  0.8 

 
 
 
 

Table 2.6.1e  Pressures (psi) for Locomotives from Loaded Coal Trains 
                                   at Richmond 
 

Cell   File 2‐6  File 3‐1 File 3‐7  File 9‐3 File 10‐5 File 11‐2  File 13‐2 

   Locos  Locos  Locos  Locos  Locos  Locos  Locos 

1 (RC)  7.5  5.4  5.7  7.5  8  ‐  7.1 

2 (RT)  14  13.5  14  16  15  14  13.7 

3 (CC)  4  4.5  4.6  5  5  4  4.8 

4 (CT)  2.8  3.4  3.3  4  4  4  2.9 

 

 
 
 
Table 2.6.1f. Pressures (psi) for Loaded Hoppers from Loaded Coal Trains at 
                     Richmond 
 

Cell   File 2‐6  File 3‐1  File 3‐7   File 9‐3 File 10‐5 File 11‐2  File 13‐2 

   Loaded  Loaded  Loaded  Loaded  Loaded  Loaded  Loaded 

   Hoppers  Hoppers Hoppers Hoppers Hoppers Hoppers  Hoppers 

1 (RC)  6  6  5.3  7.5  8   ‐  7.4 

2 (RT)  12.6  15  12.8  16  15  14  15.6 

3 (CC)  3.4  4.8  4.5  5  5  4  4.7 

4 (CT)  2.5  3.8  3.3  4  4  4  2.8 
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 As mentioned before, coal trains are the dominant type of train traffic over this crossing 
and are therefore considered representative. Also, they are one of the heaviest types of loadings 
that the track structure is subjected to which  makes them an even better sample to study. A plot 
of an empty coal train, Figure 2.6.2a, is provided as a sample of the pressure distribution among 
the cells. As expected, for the locomotives the cells located under the rail/tie interface record 
higher pressures than the one located under a tie at the centerline of the track. However, for the 
empty coal cars all cells recorded approximately the same pressure readings in the 2 to 3 psi (14 
to 21 kPa) range. 
 
 In order to better compare the pressure readings from Lackey to those at Richmond, a 
similar plot of the loaded coal train at Richmond is provided for Lackey as indicated in Figure 
2.6.2b. Like the plot from Richmond, the pressures on the rail/tie cells are higher than the 
tie/centerline cell. The locomotives exert an average value of 15.7 psi (108 kPa) under the rail/tie 
interface at Lackey. The loaded coal hoppers exert an average value of 15 psi (103 kPa) under 
the rail/tie interface at Lackey. Under the tie/centerline interface, the locomotives exert 6 psi (41 
kPa) and the loaded cars exert an average value of 5.5 psi (38 kPa) at Lackey. These values 
compare very favorably with those at Richmond. From the similar loaded coal train at 
Richmond, the average pressure value under the rail/tie interface was 15 psi (103 kPa) for both 
the locomotives and for the loaded coal cars. Under the tie/centerline interface average values at 
Richmond was 4 psi (28 kPa) for both the locomotives and the loaded coal cars. As can be seen 
from these values, measured pressures are comparable under similar loading conditions. 
 
 Note that for the loaded coal trains at Lackey, Cell 4 on the low side of the curve 
consistently records a slightly higher pressure than do Cells 1 and 2 located under the high side 
of the curve, as noted in Tables 2.6.2a and 2.6.2b and Figure 2.6.2b. While Cells 1 and 2 record a 
pressure of 12 psi (83 kPa) for the locomotives and 11 psi (76 kPa) for the cars, Cell 4 recorded a 
pressure of 23 psi (158 kPa) for the locomotives and cars. The difference in the pressure readings 
is due to the fact that this crossing is in a curve and the track is superelevated. Cells 1 and 2 are 
located under the high rail whereas Cell 4 is located under the low rail. The fact that the low rail 
has more pressure exerted on it is understandable since trains at this site negotiated the curve at 
speeds less than the balancing speed for the superelevation. Therefore, there is increased loading 
on the low rail and thus higher pressures distributed through the rails, ties, and ballast to the 
asphalt layer. 
 
 In order to further examine this point, Tables 2.6.2c and 2.6.2d show the typical pressure 
readings recorded under empty coal trains for both locomotives and hopper cars, and Tables 
2.6.2a and 2.6.2b show typical pressure readings recorded under loaded coal trains for both 
locomotives and hopper cars. Next to the cell designation number is also noted the location of 
the cell under the track structure. HRT stands for High Rail/Tie, CT stands for Centerline of 
Track/Tie, and LRT stands for Low Rail/Tie. 
 
 From this data, it appears that with the exception of the locomotives under file 3-12, Cell 
4 recorded the highest pressure for each loading. In some instances for the empty coal trains, 
other cells recorded essentially the same pressures as Cell 4. However, for the loaded coal trains 
Cell 4 recorded the highest pressure readings. The highest value recorded from all of the data 
was 27 psi (186 kPa), which came from a loaded coal hopper under the low rail/tie interface. The 
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Figure 2.6.2a  Pressures for Empty Coal Train at Lackey 
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Figure 2.6.2b  Pressures for Loaded Coal Train at Lackey  
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lowest value recorded was 1 psi (7 kPa) which developed under the rail/tie interface of both the 
low and high rail. However, it had already been determined that at low pressures, the distribution 
of pressures among the cells tends to be more nearly equal. Therefore, the fact that the lowest 
pressure was recorded under the low rail should not affect the fact that the low rail experiences 
the highest pressure. 
 
2.7 TRANSPORTATION TECHNOLOGY CENTER DATA 
During the period of testing in Kentucky on CSXT revenue lines, concurrent testing was being 
conducted at Pueblo, Colorado at the Transportation Technology Center (TTCI), a unit of the 
Association of American Railroads (Li, et al. 2001). Pressure measurements in railroad trackbeds 
have only been performed by TTCI and the University of Kentucky. Therefore, the data obtained 
by TTCI is the only comparable data available for the tests that have been performed by the 
University of Kentucky. A report has been issued for the test results performed by TTCI, and is 
included in Appendix C for review. 
 
 Testing procedures similar to that employed in Kentucky was used to obtain pressure 
measurements. The same type of pressure cells were used along with a similar data acquisition 
system. However, the asphalt layer that the tests were performed on was thicker than the asphalt 
layers tested in Kentucky. Also, heavier 39,000 lb (17,700 kg) wheel load cars were tested 
instead of the 33,000 and 36,000 lb (15,000 and 16,300 kg) cars used on CSXT revenue lines. 
Included in the report is the result of a representative test run of a train at 40 mph (64 km/hr). As 
can be seen from the chart, the locomotive pressure was approximately 17 psi (117 kPa). When 
compared to the average pressure value of locomotives at Richmond and Lackey (14.8 psi (102 
kPa) at Richmond and 14.3 psi (98 kPa) at Lackey) this value is slightly higher. The reason that 
the pressures recorded at Lackey and Richmond are lower is due to the fact that these 
measurements were made in crossings. The pressure measurements obtained by TTCI were on 
open track with an asphalt underlayment. In crossings, the added surface materials for the 
smooth passage of highway vehicles further dissipates the loads. In addition, the 39,000 lb 
(17,700 kg) wheel load cars used for the Pueblo testing would be expected to produce slightly 
higher pressures than the lighter weight cars used for the CSX Transportation testing. However, a 
difference of 2 to 3 psi (14 to 21 kPa) is not very significant at these predominately low pressure 
levels, therefore it would seem reasonable to conclude that the testing performed by the 
Transportation Technology Center serves to validate the testing performed for this study. 
 
2.8  FLAT WHEEL EFFECTS 
When reviewing pressure plots for entire trains, trends tend to evolve. From some of the plots, 
sharp spikes rise much higher than the adjacent readings. Figure 2.8 illustrates this. This plot is a 
full trace of an empty coal train at Lackey with two locomotives and 95 empty cars. This 
pressure trace was recorded from Cell 2 located under the rail/tie intersection on the high side of 
the crossing. From this plot, it can be seen that the locomotives exert a pressure of about 12 psi 
(83 kPa), while the empty cars exert a prevailing pressure of about 3 psi (21 kPa). Across the plot 
many pressures are higher than these prevailing values. In particular, one of the pressure peaks 
goes up to 25 psi (172 kPa), twice the value of the prevailing pressures for the locomotives, and 
eight times the pressure of the empty cars. 
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Table 2.6.2a. Pressures (psi) for Locomotives from Empty Coal Trains at Lackey 
Cell   File 5‐7   File 6‐10   File 6‐11 

   Locos  Locos  Locos 

1 (HRT)  12  20  14.5 

2 (HRT)  12.5  18  13.5 

3 (CT)  5  5.9  6 

4 (LRT)  18  22  26 

 

 
Table 2.6.2b. Pressures (psi) for Empty Hoppers from Empty Coal Trains at 

                                Lackey 
Cell  File 5‐7  File 6‐10  File 6‐11 

   Loaded  Loaded  Loaded 

   Hoppers  Hoppers  Hoppers 

1 (HRT)  13  17.3  15 

2 (HRT)  14.5  15.7  14 

3 (CT)  5  5.6  6 

4 (LRT)  18  21.5  27 

 
 

Table 2.6.2c. Pressures (psi) for Locomotives from Loaded Coal Trains at Lackey 
Cell   File 2‐2  File 3‐12 File 4‐2 File 4‐6 File 4‐12 File 4‐15  File 5‐4 

   Locos  Locos  Locos  Locos  Locos  Locos  Locos 

1 (HRT)  12  18   ‐  12  12  15  10 

2 (HRT)  8  12  12  10  10  11  13 

3 (CT)  6  6  5  5  4.5  5  6.2 

4 (LRT)  14  14  12  16  15  15  17 

 
 

Table 2.6.2d. Pressures (psi) for Loaded Hoppers from Loaded  
                                       Coal Trains at Lackey 

Cell  File 2‐2  File 3‐12 File 4‐2  File 4‐6  File 4‐12 File 4‐15  File 5‐4 

   Empty  Empty  Empty  Empty  Empty  Empty  Empty 

   Hoppers  Hoppers Hoppers Hoppers Hoppers Hoppers  Hoppers 

1 (HRT)  2  2   ‐  2.5  2  2  1 

2 (HRT)  2  3  2.5  3  2.5  3  1.3 

3 (CT)  2  3  2  3  2  2  3.2 

4 (LRT)  2  1  1.5  2  1.5  2  1 
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 The explanation for this phenomenon is that these increases in pressures are due to the 
added impact from the flat wheels on a train car. When the portion of the wheel that has the flat 
spot impacts the rail it typically produces a loud, ‘banging’ sound. In attempts to determine if the 
places on the plot where the pressure peaks are attributed to the flat spots on the wheels, efforts 
were made to listen for this sound when a spike appears on the chart. Indeed, when this method 
of determination was used, the sound and the associated spike correlated well. Each instance that 
a flat wheel produced a ‘banging’ sound as the train passed by, a spike would appear on the 
chart. The difference in the heights of the spikes could be due to how severe the flat wheel is, or 
whether it impacted directly over the measurement point. The reason that this example plot has 
so many spikes is that it is a coal train, and the cars from these trains tend to have more flat 
wheels of any type train. Knowing this, it is likely that flat wheels impart significant damage to 
the track structure. By developing a consistent monitoring system with this test equipment, flat 
wheels could be detected and subsequently repaired to ensure minimal subsequent damage to the 
track structure. 
 
2.9  PRESSURE DATA FOR HIGHWAY VEHICLE LOADINGS 
Pressure exerted by highway vehicles that utilize the shared sections of the railroad/highway 
crossings must be considered. 
 
2.9.1 Highway Trucks at Lackey 
Along with trying to determine where the maximum pressure within the crossing structure due to 
trains, the imbedded pressure cells were also used to measure trackbed  pressures from coal 
trucks. This is due to a significant volume of these heavy trucks that traverse this crossing. With 
a possible weight of 180,000 lbs (81,700 kg), these trucks likely exert pressures in excess of 100 
psi (690 kPa) on the crossing surface. Most of these trucks are coal trucks of the tractor-trailer 
type with 22 wheels. These wheels are spread out over three groups – two in the front (single 
axle), eight in the middle on the tractor (dual axle), and 12 on the rear (tri-axle) trailer. Figure 
2.9.1 is a picture of this type of truck. 
 
 Also making use of this crossing is a type of dump truck that hauls coal, but is shorter 
than the tractor-trailer version and not quite as frequent in number. Like the tractor-trailer truck, 
this truck has a single and a dual axle, but the difference is the fact that there is no tri-axle. In 
order to study the maximum loadings that this crossing is subjected to, only loaded coal trucks 
were evaluated since they represent the heaviest vehicles that utilize the crossing. 
 
 To illustrate the pressure recorded from these trucks, several tables are included. The first 
three, Tables 2.9.1a, 2.9.1b, and 2.9.1c, provide the pressure distributions for the single, dual, 
and tri-axles of the tractor-trailers. The final two, Tables 2.9.1d and 2.9.1e, provide the pressure 
distribution for the single and dual axles of the shorter trucks. 
 
 As can be seen from these pressures, there is a wide variation in the pressure distribution. 
It does not appear that any one cell records a maximum value. However, the manner in which the 
trucks traverse the cells does seem to make a difference. Painted on the surface of the crossing 
are dots that indicate where the cells are located in relation to the surface. When a truck crosses 
over the cells, it is possible to determine visually if the tires of the truck went directly over the 
sensors. From the data collected, higher pressure values are recorded when the trucks go directly  
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over the sensors. An example of this would be to compare 3-10 with 6-9. File 3-10 was a truck 
that directly traversed the sensors whereas file 6-9 was a truck that completely missed the 
sensors. The pressure readings for each of the cells subjected to the three different axles for the 
truck from file 3-10 are either equal to or higher than the readings for file 6-9. This is logical 
since a direct loading should increase pressure on the cells. 
 
 From these tables, for the trucks with all three wheelbases, it appears that the maximum 
pressure value recorded was 10 psi (69 kPa) under one of the wheels of the tri-axle. The 
minimum value recorded was 0.1 psi (0.7 kPa), which was under a front single axle. It may seem 
that there is great variation, but as mentioned before, pressure readings can vary significantly 
depending on how close the trucks traverse the surface relative to the sensors’ locations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9.1 Typical 22-Wheel Tractor-Trailer Truck 
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Table 2.9.1a. Pressures (psi) for Single Axle from 22-Wheelers at Lackey 

Cell File 
2‐3 

File 
2‐5 

File 
3‐2 

File 
3‐3 

File 
3‐7 

File 
3‐8

File 
3‐10

File 
4‐4

File 
4‐5

File 
4‐7

File 
4‐8

File 
5‐2

File 
5‐5

File 
6‐3

File  
6‐4 

File 
6‐6 

File 
6‐8 

File 
6‐9

1  1.5  3  1.5  0.5  1.5  0.5 2  1  1  0.5 1  ‐  0.5 0.2 1.3  1  1  0.1

2  2  3  2  2  2  1.6 2  2  2  1  2  1  1  0.1 1.3  1  1  0.5

3  1  2  2  1  2  2  2  1  2  1  2  1  0.5 0.4 2.2  1.5  2  1 

4  4  1  0.5  0.5  0.5  0.1 0.5  1.5 2  2  0.5 1  1  0.4 0.2  0.5  0.5  0.5

 
 

Table 2.9.1b. Pressures (psi) for Dual Axle from 22-Wheelers at Lackey 
Cell  File 

2‐3 
File 
2‐5 

File 
3‐2 

File 
3‐3 

File 
3‐7 

File 
3‐8 

File 
3‐10

File 
4‐4

File 
4‐5

File 
4‐7

File 
4‐8

File 
5‐2

File 
5‐5

File 
6‐3

File 
6‐4 

File 
6‐6 

File 
6‐8 

File 
6‐9 

1  3  8  3.5  1.2  4  4  3.5  2  3  1  4  ‐  1  0.3 2  2.5  4.5  0.2 

2  4  8  4.5  4  5  3.5  6  4  5  3  6  3.5 5  1.1 2.7  4  3.5  1 

3  3  5  5  2  4.5  5  4  2  4  2  4  2  2  1.8 4.8  4  4.5  2 

4  6  4  1.5  3  2  1  1.5  5  4  3  2  2  4  1.8 2.6  2  2  1 

 
 

Table 2.9.1c. Pressures (psi) for Tri-Axle from 22-Wheelers at Lackey 
Cell  File 

2‐3 
File 
2‐5 

File 
3‐2 

File 
3‐3 

File 
3‐7 

File 
3‐8 

File 
3‐10

File 
4‐4

File 
4‐5

File 
4‐7

File 
4‐8

File 
5‐2

File 
5‐5

File 6‐
3 

File 
6‐4 

File 
6‐6 

File 
6‐8

File 
6‐9

1  6  10  4  2.3  5  2.5  3.5  3  3.5 2  5  ‐  3  0.3  1.7  3  4  0.3

2  6  10  4.5  5  5  3.2  6  6  7  5  6  7  8  1.3  2.6  4  3.5 2 

3  4  5  5  4  5  4.6  4  3  4  3  4  3  3  1.3  4.5  4  4.5 2 

4  4  4  1.5  4  1.5  0.6  1  4  4  3  1  3  4  0.9  1  1  1.5 1 

 

 

Table 2.9.1d. Pressures (psi) for Single Axle from Single-Dual Axle 
                                      Trucks at Lackey 

Cell   File 2‐5  File 4‐3  File 4‐10 File 4‐13 File 5‐3  File 5‐6  File 6‐2 

   Single  Single  Single  Single  Single  Single  Single 

   Axle  Axle  Axle  Axle  Axle  Axle  Axle 

1  2.5  ‐  1  1  ‐  3  2.7 

2  5  2  1  1  1  1  2 

3  2  1  2  3  3  3  2.5 

4  2  3  0  0.5  1  1  1.3 
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Table 2.9.1e: Pressures (psi) for Dual Axle from Single-Dual Axle Trucks at Lackey 
 

Cell  File 2‐5  File 4‐3  File 4‐10 File 4‐13 File 5‐3  File 5‐6  File 6‐2 

   Dual  Dual  Dual  Dual  Dual  Dual  Dual 

   Axle  Axle  Axle  Axle  Axle  Axle  Axle 

1  9.5  ‐  6  6  ‐  5  4.4 

2  11  6  5  5  4.5  8  7.7 

3  6  4  4  5  4.5  5  5.3 

4  8  6.5  1  1  2  3  2.8 

 
 In order to illustrate what the pressure trace looks like from a typical truck, a sample is 
included. Figure 2.9.1 shows a tractor-trailer truck with the three different axle sets. The first 
peak on the chart is the single axle, which records a pressure of about 1.5 psi (10.3 kPa). The 
second peak that actually has two points in the group is the dual axle (one peak for each axle), 
which appears to be about 4 psi (27.6 kPa). Finally, the third group of pressure peaks that has 
three points is the tri-axle on the rear of the truck. The average pressure for the tri-axle appears to 
be about 4.5 psi (31 kPa). While these values may be somewhat higher than the average value, 
the reason for this is that this plot was taken from one of the files that recorded a truck going 
directly over the sensors. As mentioned before, trucks that directly go over the surface where the 
sensors are located tend to record the highest pressure readings. 
 
 Values for comparison purposes were also determined for the shorter trucks with only 
two wheelbases. The maximum value for this type of truck was 11 psi (76 kPa) under the dual 
axle. The minimum value occurred under the front single axle and was 0.5 psi (3.5 kPa). These 
values seem to be slightly higher than those for the longer trucks. This conclusion seems possible 
since the shorter trucks tend to have more load capacity for the size of the truck. Therefore, it 
would seem that these trucks do more damage to the crossing than the longer tractor-trailer 
trucks. 
 
2.9.2 Highway Trucks at Richmond 
Pressure measurements of trucks have also been performed at the crossing in Richmond, 
Kentucky. This crossing is located on a primary route through Richmond, and therefore receives 
more passenger cars than heavily loaded trucks. The types of trucks that frequently utilize this 
crossing are sand/gravel trucks, tractor-trailer transport trucks, and concrete trucks. A picture and 
plot of a concrete truck are included for reference. Figure 2.9.2 is a picture of a typical 10 yd3 
(7.6 m3) concrete truck, having a gross weight of 80,000 lbs (36,300 kg), and a pressure plot of 
this truck going over the crossing. 
 
 As can be seen from the plot, concrete trucks are comparable to the shorter coal trucks 
from Lackey due to the similar single axle and dual axle configuration of the wheels. On this 
plot, the single axle exerts a pressure of about 5.5 psi (38 kPa), and the dual axle exerts a 
pressure of about 5 psi (34 kPa). 
 



29 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure. 2.9.2 Typical Concrete Truck 
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Table 2.9.2a. Pressures (psi) for Single Axle from Single-Dual Axle Trucks at Richmond 
 

Cell  File 10‐4  File 11‐8 

   Loaded Sand  Loaded Gravel 

   Truck  Truck 

1 (RC)  1.5  1 

2 (RT)  5  4.5 

3 (CC)  2.5  1 

4 (CT)  1  1 

 
 
 
Table 2.9.2b. Pressures (psi) for Dual Axle from Single-Dual Axle Trucks at Richmond 

 

Cell  File 10‐4  File 11‐8 

   Loaded Sand  Loaded Gravel 

   Truck  Truck 

1 (RC)  1.5  1.5 

2 (RT)  5  7.5 

3 (CC)  2.5  1.5 

4 (CT)  2  2.5 

 

 
 Tables for loaded sand and gravel trucks are also included for comparison purposes. 
These measurements can be seen in Tables 2.9.2a and 2.9.2b. For the single axle, the maximum 
value is 5 psi (34 kPa), and the minimum value is 1 psi (7 kPa). For the dual axles, the maximum 
value is 7.5 psi (52 kPa), and the minimum value is 1.5 psi (10 kPa). The pressure exerted under 
the single axle seems to be consistent for both crossings, whereas the pressure exerted by the 
dual axle seems to be much higher for Lackey. This pressure difference could be due to the 
amount of the material being hauled. If the trucks were exactly equal and therefore truly 
comparable, the same pressure should be read at the Richmond crossing as at the Lackey 
crossing. 
 
2.9.3 Passenger Cars 
Trucks are the heaviest highway vehicles that traverse crossings, but typically they are not the 
most numerous types of vehicles traversing crossings. For both Richmond and Lackey, passenger 
vehicles account for the largest percentage of the traffic volume. Figure 2.9.3 shows a real-time 
plot of a passenger car going over the crossing. This front wheel drive car has two single axles. 
The first one exerted a pressure of 0.75 psi (5 kPa). The second axle exerted a slightly less 
pressure of 0.5 psi (3.5 kPa). As expected, these values were quite low. As mentioned 
previously, an average person standing on top of the pressure cell would exert 6 psi (4 kPa). This 
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is more than 10 times the pressure the passenger car exerts on top of the asphalt layer. Pressures 
on top of the asphalt are therefore negligible for passenger car loadings, and should not be a 
factor in structural design of the crossing. 
 
2.10 DISCUSSION 
It is important to note that the two instrumental highway crossings are very smooth and stable 
and the impact loadings from highway vehicles are minimal. A typical crossing on weak support 
that has settled is likely to be rough. The pressures exerted to the track structure can be expected 
to be much greater due to the impact loadings produced by the vehicles bouncing across the 
crossing. Therefore, the pressures exerted by the heavy trucks on these two crossings can be 
expected to represent minimum expected values. Impact pressures on rough crossings may be 
two or three times greater than those recorded for this study. The importance of maintaining 
smooth crossings and approaches cannot be over emphasized. 
 
 

 
Figure 2.9.3 Typical Pressure Trace of a Passenger Car 
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CHAPTER 3. PRESSURE SENSITIVE INK SENSORS 
 
3.1  DATA ACQUISITION SYSTEM 
A matrix-based force sensitive sensor was used to directly measure contract pressures between 
rubber-tired highway vehicles and crossing surfaces. Tekscan Inc., the company that produces 
the force distribution measurement system, provides sensors, software, and technical support for 
the product. The measurements are made with a think (approximately 40 mil thick) matrix-based 
sensor consisting of two flexible polyester sheets with silver conductive electrodes printed on 
them. One sheet has semi-conductive ink printed in rows while the other sheet has the semi-
conductive ink printed in perpendicular columns. The two sheets of polyester are then glued 
together along their periphery. The illustration in Figure 3.1a shows a basic Tekscan sensor and 
its components. 
 
 The ink is pressure sensitive and its conductivity varies with applied force, similar to the 
components of a strain gauge. By applying force to one row and one column at a time, the 
system isolates the location where the row and column meet which completes the circuit. The 
force applied is determined by measuring the change in resistivity through the circuit. When 
force is distributed over the sensor, this process is repeated for all the rows and columns and the 
distribution of force over the active area is determined (Tekscan, 2003). 
 
 Saturation of the cell occurs when the pressure reaches the capacity of the particular 
sensor. 
 
 Two other components, in addition to the sensor, are essential in order to conduct tests 
and record measurements. The first is the Data Acquisition Handle, which attaches to a strip on 
the sensor. The handle has pogo pins that tightly clamp to the senor. These pogo pins make 
individual contact with each of the silver leads that connect to the columns and rows of ink 
(Stith, 2005). 
 
 The final piece of equipment is a computer with the I-Scan Software installed. I-Scan is 
the computer program developed by Tekscan that enables the user to record and analyze data. 
Figure 3.1b is a schematic view of the setup of the Tekscan system for in-track tests. Figure 3.1c 
shows an in-track view. 
 
3.2  CALIBRATION 
The sensor must be calibrated prior to using it for in-situ measurements. If a laboratory 
compression testing machine is used, the rate and magnitude of loading should closely simulate 
loading conditions in the track or on the highway crossing surface. This requires either a section 
of rail to simulate in-track tests or a tire to simulate a highway vehicle. A more direct procedure 
can be used for highway surface measurements. This requires a known loading on the test 
vehicle tire. This can be obtained from a vehicle weight scale, typically used for weighing 
highway trucks. 
 
3.3  TYPICAL PRESSURE DATA 
Figure 3.3a shows the testing procedure and data for a typical 22-wheel, 150,000-lb (68 metric 
ton) gross weight loaded coal truck. The green areas indicate higher pressures than the blue 
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Figure 3.1a.  Basic Tekscan Sensor Schematic (www.tekscan.com/technology) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1b. Schematic Diagram of Tekscan Measurement System in the Track 
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Figure 3.1c. Position of Tekscan Sensor During In-track Testing 

areas. The white areas are indicative of the tread which does not contact the pavement or transfer 
pressure. The surface contact pressure is determined by dividing the total load on the tire by the 
contact area. The particular tire for which the measurement was taken is a rear tire on the tractor. 
The calculated contact pressure is 135 psi (931 kPa). A separate air inflation pressure reading 
was 138 psi (951 kPa), very close to the calculated pressure. The loading on a particular tire will 
vary depending on the load distribution and truck configuration. 
 
 Figure 3.3b shows the pressure distribution under the front tire for an 8,000-lb (3.6 metric 
ton) gross weight Suburban vehicle. The calculated contact pressure of 75 psi (571 kPa) was 
within 2 psi (14 kPa) of the measured tire inflation pressure. 
 
 Figure 3.3c is a typical pressure distribution below the base of rail. Note the three highest 
contact points indicated by the yellow color. The average pressure under the rail will range from 
400 to 700 psi (2760 to 4825 kP) depending on the locomotive or car weight, train speed, or 
other dynamic effects. It is necessary to use a very thin rubber bladder filled with hydraulic fluid 
in order to distribute the loadings over a larger contact area and reduce isolated peak pressures 
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Figure 3.3.a. Imprint of Tractor Rear Tire of 151,000 lb Loaded Coal Truck 

   

Rear Tires of Tractor of a 151,000 lb Loaded Coal Truck on Concrete 
Crossing of Kentucky Coal Terminal, Mile Post 6.6.  May 25, 2004 

 9842 lb 

72.93 in^2 

135 psi 
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Figure 3.3b. Imprint of Front Tire of 8,000 lb Suburban Truck 

Front Tire of a CSXT Suburban on Asphalt Parking Lot in Ashland Oil Company.  
May 25, 2004  

1652 lb 75 PSI 

27.15 in^2 
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Figure 3.3c. Placement of Tekscan Sensor in Track 
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CHAPTER 4.  FINDINGS AND CONCLUSIONS 
 
4.1  FINDINGS 
Dynamic Pressures at the rail base/tie plate interface under 286,000 lb (130 metric ton) railway 
loadings ranged from 400 to 600 psi (2800 to 4200 kPa) as measured with the film sensors on 
open track. 
 
 Peak Dynamic Pressures at the top of asphalt layer (below ballast) typically ranged from 
13 to 17 psi (90 to 120 kPa) under the rail/tie intersection for both open track and highway 
crossings under 286,000 lb (130 metric ton) railway loadings. Transmitted pressures were 
considerably lower in magnitude within the crib area or center of track. 
 
 Peak Dynamic Pressures at the top of subgrade layer (below asphalt) typically ranged 
from 7 to 8 psi (48 to 55 kPa) under the rail/tie intersection for open track under 286,000 lb (130 
metric ton) railway loadings. 
 
 Peak Dynamic Pressures at the top of asphalt layer (below ballast) typically ranged from 
4 to 6 psi (28 to 41 kPa) under the rail/tie intersection for highway crossings under heavily 
loaded highway trucks and less than 1 psi (7 kPa) for passenger cars. The two instrumented 
crossings were very smooth, minimizing impact forces. 
 
 Static Surface Pressures at the tire/pavement interface on highway/railway crossings for 
highway vehicles were very close to the respective tire inflation pressures. These ranged from 
135 psi (930 kPa) for heavily loaded coal trucks to around 75 psi (515 kPa) for utility trucks. 
 
 Substructure Pressures were higher when train cars with flat wheels impacted the track. 
 
 Substructure Pressures were higher under the low rail/tie plate interface (than under the 
high side) for curve track when the train was traveling at a speed lower than the design speed for 
the amount of super elevation in the track. 
 
 Substructure Pressures obtained in this research for revenue track installations were 
comparable with those obtained at the TTCI Test Facility at Pueblo. 
 
4.2 CONCLUSIONS 
Geokon Pressure Cells were successfully utilized to measure vertical pressures in the track 
substructure, at highway-railway at-grade crossings, for both highway loadings and railway 
loadings. 
 
 It is appropriate to position the cells at either of the following surfaces – the top of 
asphalt (bottom of ballast) or the top of subgrade (bottom of asphalt). 
 
 Pressure values obtained for railway loadings in open track installations and crossing 
installations, for the same loading conditions, were similar in magnitude. 
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 When installing pressure cells in existing trackbeds, the ballast that is removed to install 
and position the pressure cell, must be re-positioned and compacted to the same compaction 
(density) as the adjacent undisturbed ballast. This will ensure uniform pressure distributions, so 
that realistic pressure values will be obtained. 
 
 When installing pressure cells in new trackbeds, care must be exercised when distributing 
the ballast to minimize damage to the cells. It is easier to obtain uniform compaction of the 
ballast with this type of installation as compared to placing the cell in an existing trackbed. 
 
 Vertical pressures transmitted through the track structure under railway and highway 
loadings are not uniformly distributed below the ballast. Peak pressures develop under the rail/tie 
intersection; whereas, pressures recorded under the cribs and center of the track are significantly 
lower. 
 
 Tekscon Piezoelectric Film Sensors were successfully utilized to measure vertical contact 
pressures in the track superstructure, for railway loadings in open track, at the base of rail/top of 
tie plate interface. 
 
 Film sensors also were successfully utilized to measure contact pressures at the rubber 
tire/pavement surface interface for a wide range of vehicles. Highway/railway crossing surfaces 
must be designed and constructed to withstand the imparted levels. 
 
 Film sensors must be handled with care and protected on each side with a layer of Teflon 
and Mylar. 
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APPENDIX A 
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Road Crossing Rehabilitation 
 

US 25/421 (Main Street) Richmond, Kentucky 
 
 

CC Sub.; OKC 118.77 (353526A); Tangent 
 

September 13, 2000 

 

07:30 Started work tearing out old crossing 

08:30 Lifted out first panel 

08:45 Lifted out second panel 

 Started excavation of old ballast and subgrade preparation 

09:00 Set new track panel on rail north of crossing 

09:35 The two asphalt trucks arrived on the project 

09:40 Excavation complete 

 Started rolling subgrade 

09:55 Started dumping and spreading asphalt 

10:15 Finished dumping asphalt 

10:20 Finished spreading asphalt 

 Started rolling asphalt 

10:30 Finished rolling asphalt 

 Started dumping ballast on north end 

 Started placing pressure cells on asphalt 

10:45 Pressure cells in place 

11:00 Finished spreading ballast 

 Started rolling ballast 

11:05 Finished rolling ballast 
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11:10 Track panel set on compacted ballast 

11:25 All joints bolted together  

 Started dumping cribbing ballast 

 COULD HAVE RUN TRAIN 

11:50 Started surfacing, tamping and brooming 

13:25 Finished surfacing, tamping and brooming 

13:40 Set first concrete surface panel in place 

15:00 State begins paving preparations 

15:30 Finished placing concrete surface panels and rubber inserts 

17:15 First train passes (Could have run train at 11:25) 

18:15 First vehicle passes over crossing 

State will finish paving on Thursday and CSX will finish paving walkways on Thursday. The 
track raise is about 6 inches. 

Equipment – 2 backhoes, 2 loaders, 1 dozer, 2 rail cranes, several dump trucks plus a state roller 

Wide Mark and Mike Mink were the contractors 

 Note that the subgrade, asphalt underlayment and ballast were rolled (compacted). Panel 

set perfectly on the compacted ballast bed and no rail trimming was necessary. Track panel was 

set in place and joint bars were attached in 20 minutes. Asphalt underlayment was a base mix 

and appeared to have plenty of asphalt (good looking mix which compacted well). Existing 

subgrade (actually did not hit any true subgrade, had ample ballast mixed in) had some wet 

pockets under several ties, but there was no reason that the crossing should have settled and 

failed. It appeared to have good support. KSA precast concrete crossing, approx. 75 feet long, 

and a 90 feet long wood tie panel were used. The existing track panel had concrete ties. The 

pressure cell installation only required 15 minutes and ballast was being dumped and spread 

during that time. Crossing should be perfect and very smooth. 



B‐1 
 

APPENDIX B 
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Road Crossing Rehabilitation 
 

KY 550 (Floyd County) Lackey, Kentucky 

 

E & BV Sub. ; CMO 18.2 (227883 H); 12 Degree Curve 

June 18, 2001 

Activities:  Remove two lanes of timber/asphalt crossing (wide truck turns and on  
                               skew, approximately 55 feet). 
 

 Excavate 26 inches below existing top of rail. 

 Place 5 to 6 inches of hot mix asphalt base compacted. 

 Install four load cells on top of asphalt. 

 Place 6 to 8 inches of ballast from stockpile compacted. 

 Place new 80 foot wood tie panel. 

 Place cribbing ballast from stockpile. 

 Raise track 4 to 6 inches, line, tamp, surface, regulate and broom. 

 Place seven 8-foot long Omni concrete panels on the 12curve. 

 Place and compact hot mix asphalt in trenches beside each rail full depth 
from top of tie (no rubber headers used). Asphalt placed directly against 
rail on field sides. 

 Place 20 to 40 foot long asphalt approaches. 

 

Major Equipment: Two hydraulic excavators – Huff 

 One front-end loader – Huff (arrived late) 

 One front-end loader – State 

 One roller – State 

 One motor grader – State 

 One backhoe – CSX 
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Notes: KY 550 is a heavily traveled coal haul road. The railroad crossing is close to the 
junction of KY 550 and KY 7. Most of the loaded coal trucks travel south on KY 

550. Those coming north on KY 7 must turn about 135 which requires a wide 
crossing and those trucks utilize both lanes during the turning movement. 

The highway was closed to traffic at 7:00 a.m. and was opened at 7:15 p.m. The 
KYDOT handled the traffic control. The closing was advertised in the local 
newspaper and on the radio. The coal companies were notified since the close-by 
detour would not accommodate coal trucks. The close-by detour was only about 
0.5 mile out of the way, but had a narrow roadway width and two sharp turns. 
Passenger cars and small trucks were accommodated satisfactorily.  

The KYDOT supplied and placed all of the asphalt – under the track, in the 
trenches beside the track, and for the approaches. 

Work began at 7:00 a.m., could have run a train at 12:40 p.m., track people left at 
4:00 p.m., ran first train at 4:55 p.m., highway was opened to traffic at 7:15 p.m. 

Four load cells were placed on top of the asphalt. Two were placed on adjacent 
ties under the rail/tie interfaces of the high rail (west rail), since it had been 
determined from a previous study at the US 25/421 (Main Street) crossing in 
Richmond (CC Sub. OKC 118.77) that maximum pressures are developed at these 
points in the track structure. One load cell was placed under the tie center with 
two ties in between this cell and the two other cells under the rail/tie interface. 
The fourth cell was placed under the rail/ tie interface again but was under the low 
rail (east rail) with one tie in between it and the cell located under the center of 
the tie. The purpose of this was to relate and compare pressures developed on top 
of the asphalt for different loads such as heavily loaded coal trucks and freight 
trains. 

It was very important to position the cells under the rail/tie interface, and beneath 
the center of the tie. Prior to removing the panel, the location for each cell was 
marked. Two survey points were established, one east and one west of the track. 
One was next to an underground cable sign (on the west side of the track), and the 
other was next to a signal pole (on the east side of the track). These two known 
points were used to triangulate the precise locations for the cells and the 
intersecting distances were recorded. To further validate the triangulation 
measures, the cell locations were located using angles measured with a theodolite 
and a tape line from the known point next to the underground cable sign. 

After the panel was removed, the previous survey measurements were used to 
locate the positions for the load cells. However, only the triangulation method was 
used due to a malfunction with the theodolite. After the panel was repositioned 
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and surfaced, follow-up surveys indicated the points were approximately 2.4 
inches off of the optimal points. Despite this difference, the points were still 
positioned close enough to be under the tie plate (for the ones under the rail/tie 
interface). 

The asphalt base mix was placed adjacent to the rail on the field sides (no rubber). 
Omni 8-foot long precast concrete panels were used between the rails. 

The track was raised 4 to 6 inches. 

Delays: 20 minutes – placing load cells; 35 minutes – tamper broke 

 

Time Schedule: 06:55 Safety briefing 

   07:05 Started removing joint bars 

   07:30 First panel out of hole 

 07:45 Second panel out of hole 

  Started excavating (no loader on job yet) 

 08:45 KYDOT loader arrived (soon punctured the gas tank) 

  Still excavating 

  Started loading spoil in truck 

 09:30 Excavation complete 

  Started rolling subgrade 

 09:40 Started dumping first load of asphalt on south end and  
 spreading with loader 

09:55 Finished dumping second load of asphalt (40 tons total under 
track) 

 Using hydraulic excavator to spread asphalt 

10:20 Started rolling asphalt underlayment 

10:30 Finished rolling asphalt 

 Started dumping ballast on south end 
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10:45 Delay – placing load cells 

11:05 End of delay 

 Continue dumping ballast 

11:20 Started compacting ballast 

11:30 Finished compacting ballast 

 Started lifting panel with hydraulic excavators 

11:37 Panel in place on ballast bed 

 Started placing joint bars 

12:23 Started dumping cribbing rock 

 Still bolting on south end 

12:40 Joint bars in place – COULD HAVE RUN TRAIN 

 Still dumping cribbing rock 

 Started tamping and raising 

13:35 Tamper broke 

14:10 Started tamping again (35 minute delay) 

14:50 Finished regulating and sweeping ballast 

 Started placing rubber pads 

15:05 First concrete panel in place 

 Still regulating south approach 

 KYDOT started tacking east highway approach 

15:25 Started dumping asphalt in east trench 

 Started bolting concrete panels 

15:40 The seventh (last) concrete panel in place 

16:00 Track maintenance people left 
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16:10 Started rolling east trench 

 Started dumping asphalt in west trench 

16:25 Started sweeping west approach 

16:40 Started tacking west approach 

16:55 First train passes (could have run 4 hours, 15 minutes earlier) 

17:05 Started dumping asphalt on west approach 

17:25 Last load of asphalt arrived 

17:50 Started rolling west approach 

18:00 Fire department sprayed water to cool asphalt 

19:15 Opened highway to traffic (12 hours and 15 minutes after closing) 

 

Individuals:  Frank Castle – KYDOT District Maintenance Engineer – Pikeville 

   Greg Couch – KYDOT District Traffic Engineer – Pikeville 

   Mark Anuszkiewicz – CSX ADE – Paintsville 

    Gary Caldwell – CSX Roadmaster – Martin 

   Martin Ramsey – Division Engineer – Erwin, TN 

   Michael Hill – Assistant Chief Engr. Admin – Jacksonville 

   Mountain Enterprises – Asphalt Supply – Martin 
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